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CALCULATION OF THE ONSET OF TURBULENCE IN NON-NEWTONIAN FLUID FLOW 
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The onset of  the transition regime in a Newtonian fluid flow is 
determined by the crit ical value of the Reynolds number,  below which 
turbulent motion is impossible. Several modifications of the Reynolds 
number have been proposed for non-Newtonian flnids [1-8]. 
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Fig. 1. Resistance coefficient g as a function of P~ number for 
a 0.3~ aqueous solution of carbopol, D = 2.54 cm.  

The meat widely used criterion is that introduced by Metzner and 
Reed [4]. On the basis of an examinat ion of the  equations of motion 
and continuity Bird [5] has shown that this criterion cannot uniquely 
characterize the moment  of onset of the transition regime, as has 
since been experimental ly eonfixmed by Uibrecht [7]. Bird's remark 
also applies to the criterion used by Ulbreeht. As noted in [7], this 
criterion was observed to be constant in the range of values of the 
exponent 0.6 < n < 1.0, L e . ,  for fluids with relatively weakly ex-  
pressed non- Newtonian properties. 

Ryan and Johnson [6] have proposed a generalized local Reynolds 
member of the type: 
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Here, D is the diameter,  P is the density, w is the local velocity, r w 
is the shear stress at the wall, and y is the coordinate normal to the wall. 

Since the expression for Z contains local values of the velocity and 
velocity gradient, it varies over the channel  cross section. Ryan and 
Johnson have suggested that the m a x i m u m  value of Z is the same for 
both Newtouian and non-Newtonian fluids. 

We t~ansform the criterion Z as follows: 

Z = Ro~[~ (R = pq)D<w>, o =w/<w>~ ~ =~[~w)"  

Here, R is the Reynolds number,  ~ is the intrinsic fluidity, (w> is the 
mean  velocity, and r is the local value of the shear stress. 

From this expression for Z it is immedia te ly  clear that it  cannot 
be the same for Newtonian and non-Newtonian fluids if only because 
the relative velocities w are described by different expressions [9]. 

The same remark also applies to the criterion proposed by Hanks 
[8], which for a circular pipe differs from Z by a constant factor. 

1. Formulation of the problem. We will consider the equation of 
motion 

pOw~/Ot q- pw$Owl/Ox j = - -  Op/Ozi q- OTji/Oxj (i, / = t ,  2, 3). (1.1) 

Here, w i are velocity vector components, t is t ime,  p is pressure, r j i  are 
the stress deviator components, and xj are the coordinates of a rectangular 
Cartesian coordinate system. We introduce the dimensionless variables. 

= x/l,  o = w / w  o, ~ = W s t / l ,  n = p / p w o  2, o = ' ~ / ' ~ w .  (1.2) 

Here, w0 and l are the characteristic velocity and length, respectively. 
The equation of motion takes the form 

~ + ~ = - - b ~ U ~  + 8 ~ ~C=p--~j], (1.3) 

where ~ is the resistance coefficient. 

We define a fluid with structural viscosity as a fluid whose 
physical parameters do not depend on t ime.  A Newtouian fluid is a 

poxticular case of a fluid with stxuctural viscosity, when the viscosity 
does not depend on the shear stress. 

Since Eq. (1.3) uniquely describes the process of motion of the 
fluid and the only integral characteristic of this equation is the re- 
sistance coefficient C, it is natural to assume that in the flow of fluids 
with structural viscosity the onset of the transition regime must cor- 
respond to the crit ical value of the resistance coefficient C.. The 
constancy of C. was reported in [4] on the basis of a large number of 
exper imental  data. 

Here, it should be noted that we are considering fluids with zero 
yield stress, i . e . ,  fluids that begin to flow even upon the application 
of an infinitely small  load. If the fluid has a yield point, then a solid 
core develops at the center of the flow, and Eq. (1.3) is not applicable 
to the  entire cross section of the channel.  

2. Cl~cular pipes. For a Newtonian fluid flowing in a circular pipe 
~. ~ 2.8- 10 "2. 

Following [9], we assume that the motion of a fluid with structural 
viscosity obeys Newton's law of viscous friction with variable fluidity: 

~ ,  = (n-v)  w .  (2. I) 

We employ the linear law [9] 

q~ = % q -  01~.  (2.2) 

Here. qo0 is the fluidity at zero shear and 0 is the stability coefficient.  
In polar coordinates with the center on the axis of the pipe we 

have the relation 

o = ~ (~ = r /ro) .  (2. a) 

Here, r is the radial coordinate and r0 is the radius of the pipe. 

Comparing Eqs. (2.1) and (2.2),  we find 

dwldr = - -  %x - -  0x ~ . (2.4) 

Using the dimensionless variables (1.2) and relation (2.3). we 
transform Eq. (2.4):  

&o Ro~ Ro3~ ~ ~ 
- ~ ( = - -  16 ~ - - ~  

pq)0aD s 8z w 
( R . =  p~0o <~> 0 . -  o , : = p <~>s ). (2.5) 

We write the continuity equations in the form 

1 

O 

Integrating by parts, we find 

1 

dr d 
l ~2 - 2 U  ~ = - - t .  (2.7) 
0 

Substituting (2.5) into (2.7) and setting ~ = ~,, we obtain 

R ,  a -~ 3.6 . t0 s 0 , R ,  - -  8.2.10 s O, = 0. (2.8) 

Here, R. is the crit ical value of the R0 number, which corresponds to 
the beginning of the transition regime. 

We write the  expression for R. in explicit form using the Cardan 
formula: 

R .  = (4.1- t050. q- )/-t.68. t0u0.  2 q- 2.2.10 ~ 0.a) 'h -t- 

+ (4.1.t0~ 0, - -  1/t .68.10u 0 ,~+ 2.2.t0"0,a) %. (2. 9) 
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Fig. 2. Resistance coefficient g as a func- 
tion of R0 number for a 0.3% aequeous 
solution of type H natrosol, D = 2.54 cm. 
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Fig. 3. Critical Reynolds number R, as a func- 
tion of the criterion 0,. The points 1-18 cor- 
respond to different aqueous solutions; the 

data have been taken from the references in- 
dicated in brackets; values of the diameter 

in centimeters are also given: 

t 0.390 natrcsol type H t.27 [,2] 
2 0.3% natresoltype H 2.54 [I~] 

3 1.0% natrosoltype G i.27 [I~] 

4 1.0% natrosoltype G 2.54 [~] 
5 0.29% ammonium oleate 0.30 [18] 
6 0.75% carboxymethyl 

cellulose t.47 [0] 

7 0.75% carboxymethyl 
cellulose i.90 [6] 

8 1.0% carboxymethyl 
cellulose 1.27 [el 

9 0.2% catbopol 1.27 [q 

10 0 .2-% carbopol t.54 {6] 

ii 0.3% carbopol t.27 [q 
t2 0.3% earbopol 2.54 [61 
13 0.4% carbopol t.27 [6] 

~4 0.4% carbopol 2.54 [e l 
15 0.5% cathopol t.27 [6] 

t6 0.5% carbopol 2.54 [0] 

t7 butadiene-styrene latex 
3 1.975 [71 

18 butadiene-styrene latex 
4 t.975 [~1 
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Expression (2.9) can be approximated as follows: 

B .  ~ 93.5 (0,) V~ at : 0, < 1.5-10a, 

R , ~ 2 3 0 0  at 0 , ~ t . 5 . t 0 4 .  ( 2 .  10) 

3. Parallel plates. For a fluid with fluidity given by (2.2) the 
dimensionless velocity gradient has the form 

d~) /~o~ :BoS; ~ .~ 
d'~- = - -  - ~ -  ~ - -  2--ff507-, ~ : 

t6p(poSh 
Ro=4p(poh<w>,  0 , =  0 

(3.  ~) 

Here, 2h is the distance between plates. 
We write the continuity equations as 

1 

f ( o d ~ = t .  
0 

(3. 2) 

On the basis of [10], in which the transition regime was investi-  
gated for water flowing in a rectangular channel  with a side ratio of 
1:20, we can set i~ . = 3.6" 10 "z. 

Substituting this value of the  resistance coefficient in (3. 1) and 
jointly solving (3.1) and (3. 2), we obtain 

B ,  ~ ~ 3. t0 s O , R , - -  7.9.10 ~ O, = 0. (3. 3) 

~ , ~ .  : [ i - ~ o  ~ r  ] 

-- (i -- ~o)* (I + ~o) = 0. (4. a) 

The crit ical value of the resistance coefficient varies as a function 
of the ratio of the radii ~0. Since reliable experimental  data over the 
entire range of values of [0 are not available, it is recommended to 
use the value o f~ ,  for a circular pipe at [0 close to zero and the ~, for 
parallel  plates at [0 close to unity. 

5. Boundary layer on a plate. We write the dimensionless velocity 
in the form 

p%S6**~ 2z w 
Ro** = pt~ob**wo, 0, = 0 , Cl = pWoZ , 

w 0. t79y 
co= <w> ' ~ =  6, ~ (5.1) 

Here, ef  is the friction coefficient,  5"* is the momentum thickness, 
and w0 the potential flow velocity. At w = 1 and g = 1 

R***~-2"690*RcI * ***- -  1.26 c ~ ,  = 0 .  (5.2) 

It is also possible to use the approximate relations 

R , ~ 9 2 . 5 ~ / ~ ,  at 0 , ~ 2 . 5 . t 0  a , 

R , ~ 2 7 0 0  at 0 , ~ 2 . 5 . t 0  ~ .  (3.4) 

4. Annular gap. For a fluid with structural viscosity flowing in 
the axial direction between concentric cylinders the dimensionless 

velocity gradient is 

d~ 16 (1 - -  ~ )  ~ - -  - -  

t280, (t - -  ~ )  

4p~o 3 (r - -  ro)z 
Ro = 2p% (r - -  to) <w>, 0, = 0 

r r a - -  b ~- l i b  ~ -I- 4ac 

a-- t6 ( t - -  ~o) 
Ro8~2 

i280,~o ' 

Ro~ (i -- ~o ~ - -  2 In ~o) Ros~ z 

no;  ( i  + ~o) q_ ~tos~ 2 ( i  § ~o + ~o 2) ro 
c = - 32 3840, ' ~o = ~--  �9 (4. 1) 

Here r a is the radius corresponding to the max i mum velocity and r0 
and r are the radii of the inside and outside cylinders, respectively. 

After integration by parts the  continuity equation takes the form 

1 

I ~  do)  d~ = E02-  t .  
d~ 

o 

(4. 2) 

Solving (4. 1) and (4. 2) jointly, we find that R, is given by the 
n o n l i n e a r  equation 

t28o. (l - -  r 5 Y ~J (t - -  ~o~) + ~4  (t - -  ~o) + 

Onset of the uamition regime in the boundary layer on a plate 

depends importantly on the  intensity of turbtflenee in the  external flow. 
The friction coefficient for a Newtonian fluid can be found from the 
relation c / =  0.44/R** and the curve expressing the crit ical Reynolds 
number [12] as a function of (u~ ~ + u22 + uz2)/3w02, where u i ase 
the free-stream fluctuation velocity components. 

6. Comparison with experiment.  The experimental  data of [6, 7, 
12, 13] on the flow of pseudo-plastic fluids (0 > 0) in circular pipes 
have been analyzed in the form of relations ~ - ~o(z) and ~ = ~(R0). 

These fluids approximately obey a linear fluidity law up to the 
onset of the transition regime. The constants of this law--the fluidity 
at zero shear q0 and the stability coefficient O--were found by the 
method of least squares. The beginning of the transition regime was 
determined from the break in the ~ = ~(R0) curve. Typical graphs are 
presented in Figs. I and 2. 

In Fig. 3 the experimental  data are compared with formulas (2. 9) 
(solid line) and (2.10) (dashed line). The agreement with experiment 
may  be considered adequate.  

The author thanks S. S. Kutateladze for supervising his research 
and E. M. Khabakhpasheva for helpful suggestions. 
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